Frequency-specific, location-nonspecific adaptation of interaural time difference sensitivity
نویسندگان
چکیده
منابع مشابه
Interaural time difference thresholds as a function of frequency.
Different models of the binaural system make different predictions for the just-detectable interaural time difference (ITD) for sine tones. To test these models, ITD thresholds were measured for human listeners focusing on high- and low-frequency regions. The measured thresholds exhibited a minimum between 700 and 1,000 Hz. As the frequency increased above 1,000 Hz, thresholds rose faster than ...
متن کاملHuman cortical sensitivity to interaural time difference in high-frequency sounds.
Human sound source localization relies on various acoustical cues one of the most important being the interaural time difference (ITD). ITD is best detected in the fine structure of low-frequency sounds but it may also contribute to spatial hearing at higher frequencies if extracted from the sound envelope. The human brain mechanisms related to this envelope ITD cue remain unexplored. Here, we ...
متن کاملLocalization by interaural time difference (ITD): effects of interaural frequency mismatch.
A commonly accepted physiological model for lateralization of low-frequency sounds by interaural time delay (ITD) stipulates that binaural comparison neurons receive input from frequency-matched channels from each ear. Here, the effects of hypothetical interaural frequency mismatches on this model are reported. For this study, the cat's auditory system peripheral to the binaural comparison neur...
متن کاملAdaptation of spike timing precision controls the sensitivity to interaural time difference in the avian auditory brainstem.
While adaptation is widely thought to facilitate neural coding, the form of adaptation should depend on how the signals are encoded. Monaural neurons early in the interaural time difference (ITD) pathway encode the phase of sound input using spike timing rather than firing rate. Such neurons in chicken nucleus magnocellularis (NM) adapt to ongoing stimuli by increasing firing rate and decreasin...
متن کاملModelling of Human Low Frequency Sound Localization Acuity Demonstrates Dominance of Spatial Variation of Interaural Time Difference and Suggests Uniform Just-Noticeable Differences in Interaural Time Difference
Sound source localization is critical to animal survival and for identification of auditory objects. We investigated the acuity with which humans localize low frequency, pure tone sounds using timing differences between the ears. These small differences in time, known as interaural time differences or ITDs, are identified in a manner that allows localization acuity of around 1° at the midline. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hearing Research
سال: 2012
ISSN: 0378-5955
DOI: 10.1016/j.heares.2012.06.002